a2 United States Patent

Mehta

US009317315B2

US 9,317,315 B2
Apr. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

METHOD FOR GENERATING SECURE
SNAPSHOTS

Inventor: Bhavesh Mehta, Mountain View, CA
(US)

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 968 days.

Appl. No.: 13/213,586

Filed: Aug. 19, 2011

Prior Publication Data

US 2013/0047154 A1l Feb. 21,2013

Int. CL.

GO6F 9/455 (2006.01)

U.S. CL

CPC .. GOGF 9/45558 (2013.01); GO6F 2009/45562
(2013.01); GO6F 2009/45575 (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

8,046,550 B2* 10/2011 Feathergill 711/162
2005/0229247 Al* 10/2005 Ishidera . 126/17
2011/0035574 Al* 2/2011 Jevansetal. 713/2

* cited by examiner
Primary Examiner — Eric C Wai

(57) ABSTRACT

In a technique for creating a secure snapshot of a virtual
machine, a guest operating system of the virtual machine is
caused to enter a locked state prior to the snapshot of the
virtual machine being created. When the snapshot is subse-
quently used to restore the virtual machine, the guest operat-
ing system of the virtual machine is restored in a locked state
and credentials are required to access the guest operating
system.

18 Claims, 7 Drawing Sheets

Receive a request to generate a snapshot of a virtual machine

™~ 502

Y

Execute a remote command in a guest operating system of the virtual
machine that causes the guest operating system to become locked

Y

Receive an acknowledgement packet indicating that the guest
operating system has been locked

T~ 506

h 4

Transmit a command to a VMM associated with the virtual machine
that, when executed, causes a snapshot of the virtual machine to be
created

™~_s 508

U.S. Patent Apr. 19,2016 Sheet 1 of 7 US 9,317,315 B2
100
/'//
Administration Host 110 ,5’
Application

112
GUI
114

N Storage Device

4 h . \\\ //'
>“// 160
Data Z S
Network N Secure
! 120)& Snapshots
; '/f\(\)_/ \\\\ . @ e
/ g e /A\\ // \‘\ . e
‘i \\\ e _—
\\\
///’ \\\\\\
///// \‘
) / Cluster 130
¥
Host System Host System
140-0 140-N Cluster
132
VM VM VM VM
142-0 | - | 142-] 144-0 | -+ | 144-K

Figure 1

U.S. Patent Apr. 19,2016 Sheet 2 of 7 US 9,317,315 B2

200

5

VM 142-0
Guest Operating System 208
Toolkit 210
Scripts 212
VM Monitor 204 VMX Driver 206
VM Kernel 202
Host System 140-0

CPU(s) Memory Storage NIC
102 104 106 108

v
Data Network 120

Figure 2A

U.S. Patent Apr. 19,2016 Sheet 3 of 7

US 9,317,315 B2

250

5

VM 144-0

Guest Operating System 208

vNIC 214

VM Monitor 204

VMX Driver 206

VM Kernel 202

Host System 140-1

CPU(s)
102

Memory Storage
104 106

NIC
108

Figure 2B

v
Data Network 120

US 9,317,315 B2

Sheet 4 of 7

Apr. 19,2016

U.S. Patent

€ 3an31q
90¢ uonesnddy T0¢ uoneorddy yels
X @~ F0¢ uoneorddy
xo~ 90¢ uoneorddy
Aw:

Z1<10ysdeug 210159y | OT1¢ 10ysdeug 18210 3 uondgp zuondp [wondQ

| A/ J
‘ e //

FITIND

00€ SoupI[

U.S. Patent Apr. 19,2016 Sheet 5 of 7 US 9,317,315 B2

400
v

Receive a request to generate a snapshot of a virtual machine T~ 402

4

Transmit a command to a host system that is executing the virtual
machine, where a VMX driver associated with the virtual machine
interfaces with a process that executes a script to lock a guest
operating system of the virtual machine

404

Y

Receive an acknowledgement indicating that the script has executed I~ 406

4

Transmit a command to a VMM associated with the virtual machine
that, when executed, causes a snapshot of the virtual machinetobe . 408
created

Figure 4

U.S. Patent Apr. 19,2016 Sheet 6 of 7 US 9,317,315 B2

Receive a request to generate a snapshot of a virtual machine T 502

4

Execute a remote command in a guest operating system of the virtual
i : T 504
machine that causes the guest operating system to become locked
r l
Receive an acknowledgement packet indicating that the guest
operating system has been locked |

4

Transmit a command to a VMM associated with the virtual machine
that, when executed, causes a snapshot of the virtual machinetobe . 508
created

Figure S

U.S. Patent Apr. 19,2016 Sheet 7 of 7 US 9,317,315 B2

- Interface 300

5

. . . Create Reslore

Option 1 Option2 |..| OptionK Snapshot 310 | Snapshot 312 r
Application 306 _ox
Application 304 _ax
Start | Application 304 | Application 306

. Interface 600

4 ,/

User

Operating System Version 1.0 .
7 programs running.

Password [J

‘ I) Turn off computer

Figure 6

US 9,317,315 B2

1
METHOD FOR GENERATING SECURE
SNAPSHOTS

BACKGROUND

Over recent years, the usage of virtual machines (VMs) has
significantly increased due to the flexibility and efficiency
that they provide. Certain VM systems are managed using a
graphical user interface (GUI) application, which provides an
intuitive visual interface for managing individual virtual
machine instances. One example GUI known in the art is
included in a vSphere® Client software product sold by
VMware, Inc. of Palo Alto, Calif. This software product
enables users to direct various commands to VMs. One of the
commands enables users to create a snapshot or checkpoint of
a VM and another enables a user to restore a VM from a
snapshot.

Users are able to centrally manage these snapshots using
vSphere. Specifically, a user can perform a restoration of a
VM by selecting, from a database of snapshots, a snapshot
that either he or she created, or a snapshot that was created by
another administrator. Unfortunately, a user who has access
to a snapshot also has access to any processes that were being
executed in the VM at the time the snapshot was created. For
example, a snapshot of a VM might include a guest OS
executing an application that exposes sensitive information,
e.g., banking software that was logged into and left active
when the snapshot was taken. Moreover, embedded network-
ing security protocols that are validated simply by being
logged into the guest OS, e.g., Microsoft Windows network-
ing, are left intact and are available to the user who restores
the snapshot, which potentially enables him or her to access
network resources he or she should be unable to view, e.g.,
shared drives and protected network files.

One approach to alleviate the foregoing problem involves
encrypting the snapshot such that a decryption key is required
prior to performing the restoration of the snapshot. Encrypt-
ing snapshots, however, takes a considerable amount of time
because snapshots are typically large in size. In addition,
providing secure management and transmission of decryp-
tion keys between users of a virtualized system introduces
additional complexities.

SUMMARY

One or more embodiments of the present invention provide
a technique for creating a secure snapshot of a virtual
machine. In this technique, a guest operating system of a
virtual machine is forced into a locked state prior to a snap-
shot of the virtual machine being created. When the snapshot
is subsequently used to restore the virtual machine, the guest
operating system of the virtual machine is restored in a locked
state and credentials are required to access the guest operating
system.

A method according to an embodiment of the present
invention generates a snapshot of a virtual machine. The
method includes the steps of receiving a request to generate a
snapshot of the virtual machine, transmitting a first command
to lock an operating system being executed by the virtual
machine, and transmitting a second command to create the
snapshot of the virtual machine.

Another embodiment of the present invention includes a
non-transitory computer readable storage medium that stores
instructions to be executed in a processing unit of a computer
system, wherein the instructions when executed in the pro-
cessing unit carry out the steps of: receiving a command to
force an operating system into a locked state, parsing one or

20

25

40

45

2

more scripts included in the operating system to locate a script
that, when executed, forces the operating system into a locked
state, causing the script to be executed, and receiving an
acknowledgement that the script has executed.

Further embodiments of the present invention include a
non-transitory computer readable storage medium that stores
instructions to be executed in a processing unit of a computer
system, wherein the instructions when executed in the pro-
cessing unit carry out the steps of: receiving a request to
generate a snapshot of the virtual machine, transmitting, via
one or more network packets, a first command and one or
more scripts that, when received and processed by an operat-
ing system being executed by the virtual machine, forces the
operating system into a locked state, and transmitting a sec-
ond command to create the snapshot of the virtual machine.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a virtual machine system comprising an
administration host configured to manage virtual machines
executing on plural hosts, according to one embodiment of
the present invention.

FIG. 2A illustrates a host system configuration that allows
a user to lock a guest operating system executing within a
virtual machine via executable scripts, according to one
embodiment of the invention.

FIG. 2B illustrates a host system configuration that allows
the user to lock a guest operating system executing within a
virtual machine via network packets, according to one
embodiment of the invention.

FIG. 3 illustrates an exemplary configuration of a GUI that
enables a user to create a secure snapshot, according to one
embodiment of the present invention.

FIG. 4 is a flow diagram of method steps for creating a
secure snapshot of a virtual machine via executable scripts,
according to one embodiment of the present invention.

FIG. 5 is a flow diagram of method steps for creating a
secure snapshot of a virtual machine via networking packets,
according to one embodiment of the present invention.

FIG. 6 illustrates a process for restoring a VM from a
secure snapshot that has been created according to one or
more embodiments of the present invention.

DETAILED DESCRIPTION

FIG. 1 illustrates a virtual machine system 100 comprising
an administration host 110 configured to manage virtual
machines 142, 144 executing on plural hosts 140, according
to one embodiment of the present invention. The virtual
machine system 100 comprises the administration host 110, a
data network 120, and cluster 130. The administration host
110 includes a management application 112 configured to
facilitate management of the virtual machines (VMs) 142,
144. The administration host 110 is coupled to the cluster 130
via data network 120. Data network 120 may comprise any
technically feasible networking system. For example, data
network 120 may implement an industry standard Ethernet
switched network, internet protocol (IP) routed network, or
any combination thereof. Alternately, the data network 120
may implement a Fibre Channel switched network.

Cluster 130 comprises one or more host systems 140, con-
figured to execute VMs 142, 144. It should be noted that in the
description provided herein an element that has multiple
instances (e.g., N), such as host system 140, is referred to
individually as 140-/ (where i is any one of 1 to N) and
collectively as 140. As shown, host system 140-0 is config-
ured to execute VMs 142-0 through 142-J; while host system

US 9,317,315 B2

3

140-N is configured to execute VMs 144-0 through 144-K.
The virtual machine system 100 may also include additional
clusters, such as cluster 132, which is structured substantially
similar to cluster 130. As described in further detail below in
conjunction with FIGS. 2A-2B, each host system 140 may
comprise a computational platform, such as a general-pur-
pose computer system. More specifically, each host system
140 may include local mass storage, networked mass storage,
or a combination thereof based on specific implementation
requirements.

The management application 112 is configured to commu-
nicate with host systems 140 via data network 120 to config-
ure, manage, and interact with VMs 142, 144. For example,
management application 112 can instruct a specific VM to
turn on, turn off, and pause execution. Management applica-
tion 112 can also connect to a particular VM to enable a user
to interact with a guest operating system (OS) and guest
applications executing within the VM. The graphical user
interface (GUI) module 114 provides specific tools, detailed
in greater detail below in FIG. 3 for selecting one or more
VMs from VMs 142-0 through 144-K, and for accepting
management commands from the user for the selected VMs.
Specifically, management application 112 enables the user to
generate a secure snapshot of a specific VM, where the snap-
shot can be used to subsequently restore the VM to an iden-
tical state to when the snapshot was taken. In one embodi-
ment, secure snapshots 162 are stored in a storage device 160
accessible to both application 112 and host systems 140 over
data network 120. Alternatively, the secure snapshots can be
stored in a storage device accessible over a storage area net-
work (SAN) or local to host systems 140.

FIG. 2A illustrates a host system 140-0 configuration 200
that allows the userto lock a guest operating system executing
within VM 142-0 via executable scripts, according to one
embodiment of the invention. As shown, host system 140-0
may be a general purpose computer system such as a work-
station, laptop, etc., for use by the user. In one embodiment,
host system 140-0 includes one or more processors (CPUs)
102, memory 104 for volatile data storage, storage 106 for
non-volatile data storage, and network interface card (NIC)
108. Storage 106 may be implemented using traditional rotat-
ing media or using a solid state technology. As also shown,
host system 140-0 is in electronic communication with man-
agement application 112 via data network 120.

Running at system level is a virtual machine (VM) kernel
202 which is a software interface layer that executes on host
system 140-0 and enables sharing of the hardware resources
included therein. VM kernel 202 may run on top of an oper-
ating system executing on host system 140-0 or directly on
hardware components of host system 140-0. Also running at
system level is virtual machine monitor (VMM) 204, which
supports VM 142-0. More generally, the VM kernel 202 and
the VMM 204 may be referred to collectively as virtualization
software or virtualization logic, which may include systems
in which some or all virtualization functionality is imple-
mented in firmware or hardware. Virtualization software or
virtualization logic may also take various other forms that
may not be readily described in terms of a VM kernel and/or
a VMM. Guest operating system 208 executes under the
control of VMM 204 and may be an embedded operating
system or a commodity operating system such as Microsoft®
Windows®. VMM 204 is in communication with VMX driver
206, which enables execution of scripts 212 that are specific
to guest operating system 208, where scripts 212 are included
in atoolkit 210 thatis installed in guest operating system 208.
For example, VMware® Tools may be installed within guest
operating system 208 to enhance the virtualization function-

10

15

20

25

30

35

40

45

50

55

60

65

4

ality thereof, including better video output, mouse and key-
board interaction, networking, and to provide scripts 212
described above. An installer for VMware Tools, when
executed, detects the type of operating system of guest oper-
ating system 208 and accordingly adjusts the installation
process. For example, if guest operating system 208 is a
Linux OS, then scripts 212 are specifically configured to be
compatible with the Linux OS. Embodiments of the invention
may require that scripts 212 include at least a set of instruc-
tions that, when executed, cause guest operating system 208
to enter into a “locked” state, i.e., where guest operating
system 208 is protected by a login screen that requires cre-
dentials of an authorized user to be entered. Additionally,
guest operating system 208 optionally includes one or more
virtual network cards (vNICs) that enable guest operating
system 208 to communicate over data network 120 via NIC
108, as described in further detail below in conjunction with
FIG. 2B.

In some embodiments, administrators of virtual machine
system 100 may exclude toolkit 210 from one or more VMs
10, e.g., reduce the memory requirements or installation laten-
cies thereof. Because embodiments of the invention generally
require guest operating system 208 to be locked to create a
secure snapshot, exclusion of toolkit 210 requires that alter-
native methods of locking guest operating system 208 are
implemented, some of which are described below in conjunc-
tion with FIG. 2B.

FIG. 2B illustrates a host system 140-1 configuration 250
that allows the userto lock a guest operating system executing
within VM 144-0 via network packets, according to one
embodiment of the invention. Here, host system 140-1 gen-
erally includes the same configuration of host system 140-0
described above in conjunction with FIG. 2A. However, as
shown, toolkit 210 and scripts 212 are excluded from guest
operating system 208 and replaced by a virtual NIC (vNIC)
214. The vNIC 214 enables application 112 to communicate
directly with VM 144-0 to facilitate locking guest operating
system 208 without requiring scripts 212 to be included in
host system 140-1. For example, if guest operating system
208 is a version of Microsoft® Windows®, then application
112 can send network packets via, e.g., Windows Manage-
ment Console, a software application included in Windows®
that enables the receipt and processing of commands over a
network, i.e., network packets that cause the operating system
to enter into a locked state. Microsoft® environments also
enable locking of guest operating system 208 via Windows®
PowerShell commands, Windows® Management Instrumen-
tation (WMI), remote procedure calls (RPCs), and web-ser-
vices management. Alternatively, when guest operating sys-
tem 208 is a version of, e.g., Linux, then application 112 is
configured to communicate with guest operating system 208
via network packets sent using a third-party program, e.g.,
secure shell (SSH) for Linux.

FIG. 3 illustrates an exemplary configuration of GUI 114,
according to one embodiment of the present invention. Here,
auser is viewing an interface 300 of an operating system that
is executing application 112. As shown, interface 300
includes one or more GUIs for additional applications that are
executing within the operating system, i.e., application 304
and application 306. In one embodiment, GUI 114 includes a
plurality of Ul elements that are selectable by a user to per-
form tasks specific to a virtual machine executing within a
host. For example, as illustrated, GUI 114 includes a snapshot
310 Ul element that, when selected, causes application 112 to
execute a secure snapshot of a virtual machine, e.g., VM
142-0, as described in further detail below in conjunction
with FIGS. 4 and 5. Additionally, GUI 114 includes a restore

US 9,317,315 B2

5

snapshot 312 Ul element that, when selected, causes applica-
tion 112 to restore a secure snapshot of a virtual machine, e.g.,
VM 142-0, as described in further detail below in conjunction
with FIG. 6.

FIG. 41is aflow diagram of method steps 400, performed by
application 112 of FIG. 1, for creating a secure snapshot of
VM 142-0 via scripts 212, according to one embodiment of
the present invention. Although the method steps are
described in conjunction with the system of FIGS. 1-3, it
should be understood that there are other systems in which
these or similar method steps may be carried out.

As shown, method steps 400 begin at step 402, where
application 112 receives a request to generate a snapshot of
VM 142-0. This request is generated, e.g., by a user who is
interacting with GUI 114 and selects Ul element snapshot
310. Requests or other triggers for generating snapshots can
be generated by other means as well, such as periodically or
in response to the detection of some fault condition, or some
other condition.

At step 404, application 112 transmits a command to VMX
driver 206, which then interfaces with toolkit 210 to execute
a particular script included in scripts 212 to lock guest oper-
ating system 208 of VM 142-0. The particular script is then
executed within guest operating system 208 and causes guest
operating system 208 to enter into a locked state. For
example, when guest operating system 208 is a version of
Microsoft Windows, scripts 212 includes the script
“rundll32.exe user32.dll, LockWorkstation” that, when
executed, forces the version of Microsoft Windows to enter
into a locked state. In another example, when guest operating
system 208 is a version of Linux, the command “$ gnome-
screensaver-command —17, when executed, forces the ver-
sion of Linux to enter into a locked state. Additional scripts
are included in scripts 212 such that all types of guest oper-
ating systems 204 may be appropriately locked, e.g., “dcop
kdesktop KScreensaverlface lock” for versions of K Desktop
Environment (KDE), and ““/System/Library/CoreServices/
MenuExtras/User.menu/Contents/Resources/CGSession—
suspend” for versions of Apple’s Mac OSX. According to
embodiments of this invention, a guest operating system is
automatically caused to enter a locked state, prior to taking a
snapshot, in response to a request or trigger to generate a
snapshot, without any action by a user or administrator
directed towards causing the guest operating system to enter
a locked state.

Atoptional step 406, application 112 receives an acknowl-
edgement indicating that the script has executed. This
acknowledgement is generated, e.g., by VMX driver 206
when it has determined that the particular script has com-
pleted in execution. In one embodiment, an additional script
may be executed by VMX driver 206 to detect the state of
guest operating system 208 to ensure that the particular script
successfully placed the guest operating system 208 into a
locked state. At step 408, application 112 transmits a com-
mand to VMM 204 that, when executed, causes a snapshot of
virtual machine 142-0 to be generated.

FIG. 5 is aflow diagram of method steps 500, performed by
application 112 of FIG. 1, for creating a secure snapshot of
VM 144-0 via networking packets, according to one embodi-
ment of the present invention. Although the method steps are
described in conjunction with the system of FIGS. 1-3, it
should be understood that there are other systems in which
these or similar method steps may be carried out.

At step 502, application 112 receives a request to generate
a snapshot of VM 144-0. At step 504, application 112
executes a remote command in guest operating system 208 of
VM 144-0 that causes guest operating system 208 to become

20

40

45

55

6

locked. Again, such network packets are configured and
transmitted according to a type of the guest operating system
208, e.g., SSH packets when guest operating system 208 is
Linux-based. At optional step 506, application 112 receives
an acknowledgement packet indicating that guest operating
system 208 has been locked. At step 508, application 112
transmits a command to VMM 204 that, when executed,
causes a snapshot of VM 144-0 to be generated.

FIG. 6 illustrates the process of restoring VM 144-0 from a
secure snapshot that has been created according to one or
more embodiments of the present invention. As shown, to
restore VM 144-0, the user first selects the command, restore
snapshot 312. In one embodiment, when the command,
restore snapshot 312, is selected by the user, he or she is
presented with a list of secure snapshots, e.g., secure snap-
shots 162, whereupon he or she may select one of them to be
restored, e.g., a secure snapshot of VM 144-0.

Upon successful restoration of VM 144-0, guest operating
system 208 executing therein is in a locked state, which is
illustrated as interface 600. Thus, before a user can access
guest operating system 208, he or she must enter valid cre-
dentials into the login fields included in interface 600. As a
result, guest operating system 208 is secured from access by
unauthorized users who otherwise may have gained access to
the secure snapshot of VM 144-0.

It should be recognized that various modifications and
changes may be made to the specific embodiments described
herein without departing from the broader spirit and scope of
the invention as set forth in the appended claims. For
example, a host system, such as host system 140-0, may be a
desktop computer that is operated by a local user running a
desktop virtualization solution, such as VMware’s Worksta-
tion virtualization product. The user of the desktop computer
may choose to create a secure snapshot according to embodi-
ments of this invention. In some embodiments, a paravirtual-
ized system may be implemented in which virtualization
logic supporting a virtual machine running a guest operating
system may communicate directly with the guest operating
system to cause the guest operating system to enter a locked
state before the virtualization logic creates a secure snapshot.
In some embodiments, a user may be given a choice of select-
ing a secure snapshot or a snapshot for which the guest oper-
ating system is not locked prior to taking the snapshot.

The various embodiments described herein may employ
various computer-implemented operations involving data
stored in computer systems. For example, these operations
may require physical manipulation of physical quantities usu-
ally, though not necessarily, these quantities may take the
form of electrical or magnetic signals where they, or repre-
sentations of them, are capable of being stored, transferred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the invention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various general
purpose machines may be used with computer programs writ-
ten in accordance with the teachings herein, or it may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including

US 9,317,315 B2

7

hand-held devices, microprocessor systems, microprocessor-
based or programmable consumer electronics, minicomput-
ers, mainframe computers, and the like.

One or more embodiments of the present invention may be
implemented as one or more computer programs or as one or
more computer program modules embodied in one or more
computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system computer
readable media may be based on any existing or subsequently
developed technology for embodying computer programs in
a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs) CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled com-
puter system so that the computer readable code is stored and
executed in a distributed fashion.

Although one or more embodiments of the present inven-
tion have been described in some detail for clarity of under-
standing, it will be apparent that certain changes and modifi-
cations may be made within the scope of the claims.
Accordingly, the described embodiments are to be considered
as illustrative and not restrictive, and the scope of the claims
is not to be limited to details given herein, but may be modi-
fied within the scope and equivalents of the claims. In the
claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.

Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the invention(s). In general,
structures and functionality presented as separate compo-
nents in exemplary configurations may be implemented as a
combined structure or component. Similarly, structures and
functionality presented as a single component may be imple-
mented as separate components. These and other variations,
modifications, additions, and improvements may fall within
the scope of the appended claims(s).

I claim:
1. A method for generating a snapshot of a virtual machine,
comprising:

receiving a trigger to generate the snapshot of the virtual
machine;

in response to the trigger, transmitting a first command to
lock an operating system being executed by the virtual
machine, wherein the first command is directed to the
virtual machine and causes the virtual machine to
execute one or more scripts included in the operating
system to force the operating system into a locked state;
and

transmitting a second command to create the snapshot of
the virtual machine,

wherein, in the snapshot, the operating system executed by
the virtual machine is in the locked state and protected
by a login screen that requires credentials of an autho-
rized user to be entered to access the operating system
after the virtual machine is restored from the snapshot,
and

30

40

45

50

55

60

65

8

wherein the second command is transmitted after an
acknowledgement is received that indicates the operat-
ing system is in the locked state.

2. The method of claim 1, wherein the one or more scripts
are included in a virtual machine software package that is
specific to a type of the operating system.

3. The method of claim 1, wherein the first command is
directed to the operating system via one or more network
packets that, when received by the operating system, forces
the operating system into the locked state.

4. The method of claim 3, wherein the network packets are
received by the operating system via a virtual network inter-
face card that is managed by the virtual machine.

5. The method of claim 3, wherein the network packets are
processed by an application included in the operating system.

6. The method of claim 3, wherein the network packets are
processed by a third party application executing on the oper-
ating system.

7. The method of claim 1, wherein the second command is
directed to a virtual machine monitor and causes the virtual
machine monitor to create the snapshot of the virtual
machine.

8. The method of claim 1, further comprising:

storing the snapshot of the virtual machine in a non-volatile

storage.
9. A non-transitory computer readable storage medium
storing instructions to be executed in a processing unit of a
computer system, wherein the instructions when executed in
the processing unit carry out the steps of:
receiving a first command to force an operating system into
a locked state;

parsing one or more scripts included in the operating sys-
tem to locate a script that, when executed, forces the
operating system into the locked state;

causing the script to be executed; and

receiving an acknowledgement that the script has executed,

wherein the operating system is executed by a virtual

machine,

wherein a snapshot is taken of the virtual machine respon-

sive to a second command after the acknowledgement is
received indicating the operating system is in the locked
state, and

wherein, in the snapshot, the operating system executed by

the virtual machine is in the locked state and protected
by a login screen that requires credentials of an autho-
rized user to be entered to access the operating system
after the virtual machine is restored from the snapshot.

10. The non-transitory computer readable storage medium
of claim 9, wherein the first command is received from a
virtual machine administrative application.

11. The non-transitory computer readable storage medium
of claim 9, wherein the one or more scripts are included in a
virtual machine software package that is specific to a type of
the operating system.

12. A non-transitory computer readable storage medium
storing instructions to be executed in a processing unit of a
computer system, wherein the instructions when executed in
the processing unit carry out the steps of:

receiving a trigger to generate a snapshot of the virtual

machine;

transmitting, via one or more network packets, a first com-

mand and one or more scripts that, when received and
processed by an operating system being executed by the
virtual machine, forces the operating system into a
locked state; and

transmitting a second command to create the snapshot of

the virtual machine,

US 9,317,315 B2

9

wherein, in the snapshot, the operating system executed by
the virtual machine is in the locked state and protected
by a login screen that requires credentials of an autho-
rized user to be entered to access the operating system
after the virtual machine is restored from the snapshot,
and

wherein the second command is transmitted after an

acknowledgement is received that indicates the operat-
ing system is in the locked state.

13. The non-transitory computer readable storage medium
of claim 12, wherein the network packets are received by the
operating system via a virtual network interface card that is
managed by the virtual machine.

14. The non-transitory computer readable storage medium
of'claim 13, wherein the network packets are processed by an
application included in the operating system.

15. The non-transitory computer readable storage medium
of claim 13, wherein the network packets are processed by a
third party application executing on the operating system.

16. The non-transitory computer readable storage medium
of claim 12, wherein the second command is directed to a
virtual machine monitor and causes the virtual machine
monitor to create the snapshot of the virtual machine.

17. The non-transitory computer readable storage medium
of claim 12, further comprising:

10

15

20

10

storing the snapshot of the virtual machine in a non-volatile
storage.
18. A computer system comprising:
a processor; and
a memory comprising computer instructions that cause the
processor to perform steps for generating a snapshot ofa
virtual machine, the steps comprising:
receiving a trigger to generate the snapshot of the virtual
machine,
in response to the trigger, transmitting a first command
to lock an operating system being executed by the
virtual machine, and
transmitting a second command to create the snapshot of
the virtual machine,
wherein, in the snapshot, the operating system executed
by the virtual machine is in a locked state protected by
a login screen that requires credentials of an autho-
rized user to be entered, after the virtual machine is
restored from the snapshot to an identical state to
when the snapshot was created, to access the operat-
ing system, and
wherein the second command is transmitted after an
acknowledgement is received that indicates the oper-
ating system is in the locked state.

#* #* #* #* #*

